CDM Smith PFAS Research and Development

CDM Smith staff are **principal investigators (PI)** or **co-PIs** on the following research projects. These projects are helping us to gain understanding of how per- and polyfluoroalkyl substances (PFAS) behave in the environment, and identify new technologies to treat contaminated sites—including those that break down PFAS.

Media	Subject	Timeframe	Summary
Croundwater	Alls Sort Westgatton	2017 – 2020	 Studies PFAS fate and transport in groundwater at complex source-zone during biotic and abiotic transformation. Examines interactions between PFAS and co-contaminants during remediation, including <i>in situ</i> chemical oxidation, <i>in situ</i> chemical reduction, and biosparging. Co-PI, ER-2720
Groundwater	FATE 8 FASSOR Investigation	2018 – 2021	 Studies PFAS interactions with soil minerals and organic matter. Evaluates PFAS interaction when mixed with non-aqueous phase liquids trichloroethylene and JP4 jet propellant. Identifies the hydrogeological parameters under saturated and unsaturated conditions. Co-PI, ER18-1259
Groundwater	FATE & TRANSPORT Investigation	2018 – 2021	 Studies PFAS mass removal and mass discharge controlling process in the vadose zone and capillary fringe under variable saturation conditions. PI, ER18-1204
Groundwater	PFAS ANALYSIS Investigation	2019 – 2020	Studies the potential use of nuclear magnetic resonance and complex resistivity as effective and rapid screening technologies for PFAS' assessment in soil, groundwater, and sediments. Co-PI, ER19-1128
Groundwater	PFAS ANALVSIS Investigation	Newly funded 2019	 Studies PFAS' improved analytical and environmental sampling techniques to assess and mitigate bias in PFAS levels during ground and surface water sampling. Co-PI, <u>ER19-1205</u>
Biosolids	FATE & R TRANSPORT Investigation	Newly awarded 2019	 Assesses PFAS levels and release from finished, field aging biosolids (dissolved and colloidal) from multiple water resource recovery facilities. PI, <u>WRF e.p16</u>
Groundwater	FATE & R TRANSPORT Investigation	2019 – 2020	 Studies the fate and transport of perfluoroalkyl precursors in soil and groundwater. Uses multiple analytical and fingerprinting tools. PI, Confidential Client
Groundwater	DESTRUCTION Treatment Technology	Completed 2015	 Studied boron-doped diamond (BDD) electrodes as an electrochemical oxidation technology to destroy PFAS. Laboratory results regarding the defluorination of PFAS look promising.
Groundwater	DESTRUCTION Treatment Technology	Completed 2015	 Electrochemical oxidation technology for perfluorooctanoic acid (PFOA) and Perfluorooctanesulfonic acid (PFOS) decomposition in groundwater. Used BDD and mixed metal oxide anodes to degrade perfluorinated compounds. Cofirmed efficient defluorination for PFOS and PFOA, with 98% and 58% recovery as fluoride.
Groundwater	DESTRUCTION Treatment Technology	Completed 2018	 Studied electrocatalytic and catalytic approaches for <i>in situ</i> PFAS treatment. Eletrocatalytic: ruthenium oxide-coated titanium + mixed metal oxide anodes to oxidize PFAS. Catalytic: rhodium-based for the hydrodefluorination of PFAS.

Media	Subject	Timeframe	Summary
Groundwater	REMOVAL Treatment Technology	2017 – 2020	 Studies PFAS removal from investigation derived waste by sorbing into chitosan-modified montmorillonite nano-composite. Co-PI, <u>ER18-1526</u>
Water Treatment	REMOVAL Treatment Technology	2017 – 2020	 A field demonstration of PFAS removal by nanofiltration, then PFAS' destruction by sequential ultraviolet oxidative/reductive in reject water. Co-PI, <u>AFCEC BAA-031</u>
Groundwater	Management Tool	2018 – 2021	 Develops a decision support tool for PFAS treatment and destructive technologies. Compares various treatment scenarios using multiple metrics through life-cycle assessment (LCA) and costing basis.
Groundwater	REMOVAL Treatment Technology	2017 – 2020	 Couples regenerable ion-exchange resin and destruction (electrochemical and photochemical treatment) technologies for PFAS removal and destruction. Studies the influence of co-contaminants on resin adsorption of PFAS. Uses life-cycle cost analysis and LCA modeling throughout to guide experimental design decisions.
Groundwater	REMOVAL Treatment Technology	2018 – 2021	 Couples electrochemical coagulation with electrochemial oxidation to concentrate, then destroy PFAS in waters. PI, <u>ER18-1278</u>
Groundwater	REMOVAL Treatment rechnology	2017 – 2021	 Couples ion-exchange resin with electrochemical oxidation for complete separation and destruction of PFOS and PFOA in groundwater. PI, AFCEC BAA-108
Food Production Animais	Risk Assessment	2019 – 2021	 Develops physiologically based pharmokinetic modeling tools to improve risk assessment and risk management capabilities for agricultural practice and food production. Collaborative effort with US and Australian regulators. PI, funded by EPA Victoria, The Australian Government & CDM Smith

Key CDM Smith PFAS Team Members

